Protective effects of levosimendan in scopolamine-induced mice model of Alzheimer's disease

Nawres Lateef Alwaeli1, Adeeb Ahmed Al-Zubaidy2, Mariam Hadi Sadiq1

1Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
2University of Warith Al-Anbiyaa, College of Medicine, Department of Pharmacology, Karbala, Iraq

ABSTRACT

Objectives. Alzheimer's disease is the most prevalent neurodegenerative disease and accounts for approximately 70% of all dementia cases worldwide. Levosimendan is a positive inotropic agent with well-documented pleiotropic properties, including anti-inflammatory and antioxidant effects. The current research evaluated the possible effect of levosimendan alone or in combination with donepezil against scopolamine-induced mice models of Alzheimer's disease.

Material and methods. Mice were divided into five groups: the control group, the induction group (scopolamine 1 mg/kg i.p once daily for 7 days), other groups that received the tested drugs prophylactically for 2 weeks and then induced with scopolamine together with the same doses of the tested drug for one week. These treatment groups included the levosimendan group (200 μg/kg i.p. once weekly for 3 weeks), the donepezil group (5 mg/kg i.p once daily for 3 weeks), and the fifth group received a combination of levosimendan (200 μg/kg i.p. once weekly) and donepezil (5mg/kg i.p once daily). Cognitive performance was assessed by conducting behavioral tests (a novel objective recognition test and Y Maze test), and the levels of biological markers of oxidative stress (SOD and MDA), inflammatory cytokines (TNFα, IL1β and IL-6) and AChE in the brain tissue homogenate were measured utilizing available ELISA kits.

Results. Levosimendan preserved the spatial memory and recognition function and significantly reduced: ACHE level, IL-6, IL-1β, TNF-α, and MDA levels, and significantly increased SOD level in mice brain tissue homogenate as compared to the induction group. And the combination of levosimendan with donepezil resulted in non-significant improvement as compared to each drug alone specifically in ACHE level reduction and oxidative stress markers.

Conclusions. The current study showed that levosimendan produced a neuroprotective effect against the scopolamine-induced mice models of AD. This effect may be in part attributed to the antioxidant and anti-inflammatory properties of levosimendan.

Keywords: levosimendan, neuroinflammation, oxidative stress, Alzheimer's disease

INTRODUCTION

Alzheimer's disease (AD) currently ranks as the most prevalent neurodegenerative disease, accounting for approximately 70% of all dementia cases worldwide [1]. AD is characterized by a gradual irreversible decline in cognitive functions, functional activities, and psychiatric symptoms that are severe enough to interfere with the everyday life of those affected both medically and socially [2].

The primary histopathological characteristics associated with AD are the presence of extracellular amyloid plaques and intracellular neurofibrillary tangles. As the amyloid hypothesis suggests the accumulation of amyloid beta initiates a series of events including mitochondrial damage, inflammatory reactions, oxidative stress, and apoptosis. Collectively, these processes are responsible for the gradual disruption of finely balanced intercellular processes and impairments in neuronal functioning [2,3]. Several drugs have been approved for disease treatment including acetylcholine esterase inhibitors (donepezil, rivastigmine, and galantamine) and memantine; however, none of these drugs can cure the disease or halt its progression [4].

Levosimendan is an inotropic agent approved for the management of acute decompensated heart failure without interfering with the sympathetic nerv-
ous system or increasing myocardial oxygen consumption [5]. Significant data have been gathered over the years revealing a wide range of pleiotropic effects of levosimendan, beginning with the potent dilatory effect that ensures perfusion to central organs including the brain [6], kidneys [7], and liver [8].

Furthermore, the opening of ATP-dependent potassium channels in the mitochondria may broaden the spectrum of cellular responses implying a protective mechanism against stressful conditions [9]. Moreover, in recent studies, levosimendan has been shown to exert a neuroprotective effect on cisplatin-induced toxicity [10], produce an anticonvulsant effect [11], and reduce tau pathology [12].

The present study aimed to investigate the possible neuroprotective effect of levosimendan on a mouse model of Alzheimer’s disease induced by scopolamine.

METHODS

Experimental design

Mice were randomly divided into 5 groups, of 10 mice each:

Group 1 (Negative Control): Mice received intraperitoneal saline solution for 21 days.

Group 2 (Induction): Mice received only 1 mg/kg scopolamine (IP) [13] for seven days to establish the AD model.

The treatment groups received the test drugs prophylactically for two weeks, and then induction with scopolamine started in the third week, together with the administration of the test drugs.

Group 3 (donepezil): Mice received donepezil (5mg/kg, IP) once daily [13].

Group 4 (levosimendan): Mice received 200 µg/kg levosimendan IP once weekly [14].

Group 5 (levosimendan and donepezil): Mice received donepezil (5 mg/kg, i.p.) once daily and levosimendan (200 µg/kg, i.p.) once weekly.

The present study was carried out at the Department of Pharmacology, College of Medicine, Al-Nahrain University, and Alrazy Center for Research and Diagnostic Kits, Baghdad, Iraq, from January 2022 to November 2022. The authorizing committee of the College of Medicine, Al-Nahrain University assessed the research protocol before granting study permission (committee approval number 219 - 18/1/2022).

Sample size

Male albino mice (n = 50) were selected, sample size estimated by:

Sample size (n) = \(p \times (1-p)Z^2_{0.95} / d^2 \)

- n: sample size
- p: prevalence
- Z: Z-score
- d: marginal error

Animals

Male albino mice were obtained from the Alrazy Center for Research and Diagnostic Kits. The animals weighed between 25 and 30 grams and were between 2.5 and 3 months old. The mice were placed in sterilized cages, with 10 mice per cage, kept in a standardized environment with controlled temperature and lighting, and then left without intervention for one week for acclimatization.

Behavioral tests

The tests were conducted on day 22 and over three successive days:

Spontaneous Y maze test

A Y-shaped maze that was custom-designed to have three arms that were oriented at 120° from each other was used for testing. The test concluded by permitting the mice to move spontaneously through the maze and by estimating the spontaneous alterations, which reflect spatial working memory. Mice with unaltered working memory can recall the recently visited arms of the maze and explore new arms. Mice were placed in a specific location in the maze and left to freely move in the maze for 10 minutes. Sequential inputs into the three arms constitute an alternation. The tests were video recorded; arm entries and total arm alternations were counted to calculate the spatial alternation, for which a high percentage implied that the mouse retained memory for the arms it had previously visited, whereas a low percentage indicated defective spatial memory, which imply hippocampal dysfunction [15]. Spontaneous alternation (%) was calculated using the following equation [16]:

\[
\text{Alternation \%} = \left(\frac{\text{Alternation No.}}{\text{Total arms Entries}-2} \right) \times 100
\]

Novel object recognition test

The basic experimental design required three sessions. In the first one (habituation), the mice were placed in a sterilized empty arena for 10 minutes. The second session (training) was 24 hours later, the mice were returned to the arena and allowed to explore two identical objects (10 minutes). The third (testing) session was carried out 4 hours after the end of the second session; the mice were placed back in the arena but one of the previous objects was substituted with a novel one, after which the mice were allowed to explore (10 minutes). Rodents have an innate attraction for novelties; therefore, a mouse that recognizes a familiar item will spend more time ex-
amining the novel object. After each test, the arena and objects were sterilized and cleaned with 70% alcohol [17,18]. The tests were video recorded and the time spent investigating each object was recorded. The recognition index is calculated using the following formula [16]:

\[
\text{Recognition Index} = \frac{T_2}{(T_1 + T_2)} \times 100
\]

T1 is the time spent exploring the familiar object and T2 is the time spent exploring the novel object.

Tissue sample collection and preparation

Diethyl ether was used to induce anesthesia. The animals were sacrificed and their brains were extracted and rinsed thoroughly with phosphate-buffered saline (PBS) to eliminate any residual blood and then weighed. Brain tissue was then homogenized using buffer phosphate saline (tissue weight (gm.)/PBS volume (mL) =1:9), and a homogenizer. The resulting homogenate was subjected to centrifugation in a cold centrifuge device at 3000 rpm for 20 minutes. The desired supernatant layers were carefully collected for biological analysis [16,19,20].

Biological analysis

Inflammatory markers (IL-1β, IL-6, and TNF-α), oxidative stress markers (SOD and MDA), and AChE levels were measured utilizing readily available ELISA kits (obtained from a bioassay technology laboratory, China). The analysis was performed following the instructions provided by the manufacturer.

Statistical analysis

The Statistical Package for the Social Sciences SPSS version 23 was used to analyze the collected data to determine the differences between groups. Independent t-test and analysis of variance test (ANOVA) were used, a significance level of p ≤0.05 was considered to indicate a significant difference, and p ≤0.001 was considered to indicate a highly significant difference.

RESULTS

Y maze: effect on spatial alterations

One week of 1 mg/kg i.p. scopolamine administration resulted in significant impairment in spatial working memory compared to a control group (p <0.05). Donepezil, levosimendan, and a combination of (donepezil+levosimendan) had comparable effects that were significantly higher than those of the induction group (p <0.05), with no significant difference from the control group (Table 1).

NORT: effect on the recognition index

The recognition index was significantly lower in the scopolamine-treated group than in the control group (p ≤0.05). However, treatment with either donepezil or levosimendan reduced the effect of scopolamine on the recognition index (p ≤0.05), with no significant difference from the control group. On the other hand, the effect of the combination of (levosimendan donepezil) was not statistically significant compared to that of either the induction or control group (Table 1).

TABLE 1. Effect of treatment protocol on behavioral tests

<table>
<thead>
<tr>
<th>Group</th>
<th>Ymaze</th>
<th>NORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>64.97±11.53*</td>
<td>67.90±9.16*</td>
</tr>
<tr>
<td>Induction (scopolamine)</td>
<td>51.75±7.78*</td>
<td>50.86±11.48*</td>
</tr>
<tr>
<td>Donepezil</td>
<td>66.29± 8.86*</td>
<td>66.23±9.37*</td>
</tr>
<tr>
<td>Levosimendan</td>
<td>63.15±6.04*</td>
<td>66.90±9.59*</td>
</tr>
<tr>
<td>Levosimendan and donepezil</td>
<td>62.75±15.91*</td>
<td>54.52±16.27</td>
</tr>
</tbody>
</table>

n = 10 mice/group, Data are expressed as the mean ± SD, # Statistically significant (p≤0.05) compared with a control group, *Statistically significant (p≤0.05) with induction (scopolamine) group

Choline esterase enzyme assessment

The current research showed that induction with scopolamine caused a highly significant increase in the level of the enzyme choline esterase compared with that in healthy controls (p ≤0.001). Compared with those in the induction group, AChE levels in the groups treated with donepezil, levosimendan, or their combination (levosimendan+donepezil) were highly significantly lower (Table 2).

TABLE 2. Effect of treatment protocol on AChE levels

<table>
<thead>
<tr>
<th>Group</th>
<th>AChE level (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.420 ± 0.10**</td>
</tr>
<tr>
<td>Induction (scopolamine)</td>
<td>2.3 ± 0.55**</td>
</tr>
<tr>
<td>Donepezil</td>
<td>1.608 ± 0.08**</td>
</tr>
<tr>
<td>Levosimendan</td>
<td>1.72 ±0.14**</td>
</tr>
<tr>
<td>Levosimendan and donepezil</td>
<td>1.430 ± 0.11**</td>
</tr>
</tbody>
</table>

n = 10 mice/group, Data are expressed as the mean ± SD, ## Highly statistically significant (p≤0.001) compared with a control group, **: Highly statistically significant (p≤0.001) compared with induction (scopolamine) group

Assessment of oxidative stress markers

Compared with the control group, the induction group presented a significant increase in MDA levels and a significant decrease in SOD. Levosimendan, donepezil, and the combination (levosimendan+donepezil) had effects on MDA levels that were significantly lower than those of the induction group, with no significant difference from the control group. Donepezil resulted in a non-statistical significant difference in SOD level in comparison to either the control or induction group. Levosimendan resulted in a com-
TABLE 3. Effect of treatment protocol on oxidative stress markers

<table>
<thead>
<tr>
<th>Group</th>
<th>MDA (ng/ml)</th>
<th>SOD (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.853±0.54*</td>
<td>16.25±2.83*</td>
</tr>
<tr>
<td>Induction (scopolamine)</td>
<td>2.628±0.249*</td>
<td>11.63±3.14*</td>
</tr>
<tr>
<td>Donepezil</td>
<td>1.937±0.37*</td>
<td>14.45±4.44*</td>
</tr>
<tr>
<td>Levosimendan</td>
<td>2.084±0.22*</td>
<td>17.34±3.15*</td>
</tr>
<tr>
<td>Levosimendan and donepezil</td>
<td>1.970±0.189*</td>
<td>20.88±5.27**</td>
</tr>
</tbody>
</table>

\(n = 10 \) mice/group, Data are expressed as the mean ± SD, *Statistically significant (\(p \leq 0.05 \)) compared with control group, **Highly statistically significant (\(p \leq 0.001 \)) compared with induction (scopolamine) group.

parable level with a control group and the combination (levosimendan+donepezil) resulted in a highly significant increase in SOD level compared to the induction group (\(p \leq 0.001 \)) and significantly higher than the donepezil group (\(p \leq 0.05 \)) (Table 3).

Assessment of the inflammatory markers

In comparison to the control group, the induction group resulted in a significant increase in inflammatory markers TNF-\(\alpha \), IL-1\(\beta \), and IL-6 (\(p \leq 0.05 \)). Both levosimendan and donepezil significantly attenuated the increase in inflammatory markers (TNF-\(\alpha \), IL-1\(\beta \), and IL-6) compared to those in the induction group. However, the combination (levosimendan+donepezil) significantly decreased the levels of TNF-\(\alpha \) and IL-1\(\beta \) compared to the induction group, but the level of IL-6 remained high, with no significant difference from that in the induction group (Table 4).

DISCUSSION

One week of 1 mg/kg i.p. scopolamine administration resulted in significant impairment in spatial working memory compared to a control group (\(p < 0.05 \)). Donepezil, levosimendan, and a combination of (donepezil+levosimendan) had comparable effects that were significantly higher than those of the induction group (\(p < 0.05 \)), with no significant difference from the control group. The result of the combination was lower than donepezil alone. The recognition index was significantly lower in the scopolamine-treated group than in the control group (\(p < 0.05 \)). However, treatment with either donepezil or levosimendan reduced the effect of scopolamine on the recognition index (\(p \leq 0.05 \)).

Induction with scopolamine caused a highly significant increase in the level of the enzyme choline esterase compared with that in healthy controls (\(p \leq 0.001 \)). Compared with those in the induction group, AChE levels in the groups treated with donepezil, levosimendan, or their combination (levosimendan+donepezil) were highly significantly lower.

Alzheimer’s disease is a progressive neurodegenerative disease that affects approximately 50 million individuals worldwide [21]. Despite extensive studies attempting to introduce drugs that target the primary pathogenesis of this disease, the approved treatment for clinical use provides symptomatic relief only [3]. The underlying pathogenesis of AD is very complex; however, it is well-documented that inflammation and oxidative stress are critical components of disease pathology, and chronic activation of any of these processes can initiate a vicious cycle of disease pathology that leads to neuronal damage [22,23].

Scopolamine acts as a muscarinic receptor blocker that induces amnesia and impairs learning in both humans and animals [24]. In addition, scopolamine seems to induce amnesia by increasing AChE activity & mimics several other biochemical characteristics of AD, for instance, by inducing amyloid beta deposition, neuroinflammation, and oxidative stress in mouse brains [25,26]. These properties have led to its use as an animal model for AD [27,28]. The Y maze and NORT are hippocampus cortex-dependent learning and memory tests that have been widely employed in mouse models to test cognitive function [29]. The present study revealed that the administration of scopolamine significantly reduced spatial alterations and recognition indices compared to those in the control group. This finding confirms previous studies by de Bruin & Pouzet [30] and Ishola et al. [31].

Levosimendan was introduced to medical practice over two decades ago as an inotropic agent for the management of acute decompensated heart failure [32]. In addition to that, levosimendan has been shown to exert several other beneficial effects, including vasodilator effects [33], mainly by opening KATP channels and, to a lesser extent, by inhibiting the phosphodiesterase III isoenzyme [32]. The vasodilation effect increases blood perfusion to vital organs, including the brain [34]. AD is strongly associated with a gradual decrease in blood flow to the brain, resulting in a significant decrease in cerebral blood flow. In humans, a fall of 20% in blood flow leads to the inability to maintain atten-

TABLE 4. Effect of treatment protocol on inflammatory markers levels

<table>
<thead>
<tr>
<th>Group</th>
<th>TNF-(\alpha) (ng/ml)</th>
<th>IL-1(\beta) (ng/ml)</th>
<th>IL-6 (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>135.509±18.81*</td>
<td>693.562±150.19*</td>
<td>142.95±46.27*</td>
</tr>
<tr>
<td>Induction (scopolamine)</td>
<td>202.523±75.50*</td>
<td>1118.541±171.60*</td>
<td>229.81±32.93*</td>
</tr>
<tr>
<td>Donepezil</td>
<td>134.291±18.71*</td>
<td>744.480±134.94*</td>
<td>176.28±24.82*</td>
</tr>
<tr>
<td>Levosimendan</td>
<td>111.761±41.24*</td>
<td>734.149±152.38*</td>
<td>165.96±29.37*</td>
</tr>
<tr>
<td>Levosimendan and donepezil</td>
<td>132.215±46.27*</td>
<td>825.695±223.55*</td>
<td>205.63±69.73*</td>
</tr>
</tbody>
</table>

\(n = 10 \) mice/group, Data are expressed as the mean ± SD, *Statistically significant (\(p \leq 0.05 \)) compared with control group.
tion, while a reduction of more than 30% in rats impairs spatial memory [35]. Levosimendan contains a hydrazone functional group in its molecular structure [36]. According to a previous molecular docking study, a synthesized hydrazone-containing compound had a direct significant inhibitory effect on AchE [37].

In the present study, levosimendan induced a highly significant reduction in AChE compared with that in the induction group. In addition, the combination of levosimendan with donepezil further reduced AChE compared with donepezil or levosimendan alone. This effect of levosimendan can be from action on improving other pathways involved in disease pathology, including antioxidant and anti-inflammatory effects [14,38].

In terms of the impact on oxidative stress markers, the antioxidant effect of levosimendan has been supported by previous studies [39,40]. Additionally, combining levosimendan with donepezil resulted in a significantly higher level of SOD compared to the induction group, indicating a positive effect of combination therapy. Moreover, levosimendan treatment alone significantly attenuated the lipid peroxidation level (MDA) compared with that in the induction group, which was in accordance with previous studies [41,42]. Levosimendan can activate KATP channels located in the mitochondrial membrane [33]; this effect in particular may provide defense against oxidative stress and ischemic conditions [41,43]. The opening of mitochondrial KATP channels allows K+ influx and membrane depolarization which reduce the effect of calcium overload, prevent mitochondrial dysfunction, and maintain cellular energy metabolism [43,44].

The effects of levosimendan in the present study on proinflammatory cytokines were consistent with previous studies [45,46] and confirmed its anti-inflammatory role. These effects could explain, at least in part, the beneficial effects of levosimendan in countering the effect of scopolamine induction. Furthermore, the combination of levosimendan with donepezil unexpectedly did not have the synergistic anti-inflammatory effect that was seen in oxidative stress markers and AChE activity, although both drugs have been shown to cause NF-κb downregulation [38,47] and suppress cytokines release [45,48]. NF-κb is an important factor in the transcription of several proinflammatory cytokines by glial cells [49].

Sareila et al. [38] demonstrated that levosimendan can reduce the activity of the NF-κb transcription pathway. Additionally, microglia possess mitochondrial KATP channels that can regulate their activity and the production of proinflammatory cytokines. The opening of these channels by levosimendan may help to decrease microglial excitatory activity and maintain it below a certain threshold [50].

Limitation

The primary study limitation was the sample size, which was primarily a factor in determining the outcome of the behavioral tests since it was necessary to exclude from the data any mice who either showed no interest in performing the tests or that exhibited individual bias in favor of exploring one object over the other in the NORT. Secondly, the utilization of all the gathered brain samples from the cortex and hippocampal regions was necessary for the biological analysis of the ELISA kits, which hindered additional histological evaluation of tissue damage.

CONCLUSIONS

The present study showed that pretreatment with levosimendan provided effective neuroprotection in a scopolamine-induced mouse model of Alzheimer’s disease. Levosimendan improves cholinergic system function by lowering AChE level and improving memory and cognitive functions. These beneficial effects could be possibly due to its antioxidant and anti-inflammatory effects. Additionally, the combined use of levosimendan and donepezil had a synergistic effect, primarily by reducing oxidative stress and AChE level.

Acknowledgment:
The author is grateful to Al-Nahrain University/College of Medicine for all the facilities used for this study.

Funding: None
Conflict of interest: None

Ethical approval:
The institution’s approving council at the College of Medicine at Al-Nahrain University evaluated the study and certified the most recent installment in January 2022. The research was performed according to the Declaration of Helsinki guidelines for ethics.
24. Hamood HM, Al-Zubaidy AA. Neuroprotective effects of Vitex agnus castus

16. Prieur EA, Jadavji NM. Assessing spatial working memory using the

15. Foudah AI, Devi S, Alam A, Salkini MA, Ross SA. Anticholinergic effect of

14. Onyango IG, Jauregui GV, Čarná M, Bennett Jr JP, Stokin GB. Neuroinflam-

13. Yadag FSA, Nguezeye Y, Kom CW, Betote PHD, Mamat A, Tchokouaha LRY,

10.4103/1673-5374.320970.

8. Res.

Biochim Biophys Acta Mol Basis Dis.

2010;2020:6372059.

2010;2020:6372059.

