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A note on graph theory techniques for brain tumor 
detection
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Abstract
Brain Tumors are detected in people of all age groups. It leads to various complications that are both physiological and 
psychological. Graph theory techniques are employed to study both functional and structural behavior of brain networks. 
In this article we discuss the pertinence of the computation of graph structural parameters and explain how perceptual 
clustering techniques enable the detection of the low/high grade of tumor and the pace with which it progresses and how 
Graph cut approaches are exploited to probe vision related factors like similarity and proximity and indicate the possibil-
ity of application to stereo, image re-impose, texture concoction and image departmentalization. 
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INTRODUCTION

Children and adults are susceptible to brain tum-
ors and mostly it culminates in disability linked to 
alarming complications that are of cognitive, medi-
cal and psychosocial in nature (Ostrom et al., 2017). 
Research has indicated that these effects with direct 
reference to brain pathology are coupled with the 
tumor itself. A normal way of assessing the  effect of 
pathology and its treatment on the human brain is 
to probe structural and functional network connec-
tivity. A latest review of 25 functional connectivity 
probes of brain tumor on adult patients deduced re-
duced connectivity strength that are functional in 
nature across natural brain networks and witness 
rapid activation of atypical patterns (Fox & King, 
2018).

ON THE ROLE OF GRAPH THEORY (GT)

GT is concerned with the study of networks 
linked to various disciplines. It has witnessed tre-
mendous growth in the area of neuroimaging and it 
permits for the design of brain networks through 

brain vertices and edges, their joining [1]. Edges are 
denoted by values explaining the degree of structur-
al connectivity among vertices. Depending on edges, 
metrics of isolation, amalgamation, and centrality 
can be found to elucidate the network properties at 
both global and local level [2] for metric computa-
tion. 

A notable positive point of graph-based metrics 
is that they are not method dependent and hence 
can be compared with other studies. Another perti-
nent concept that can be measured with graph theo-
ry relates to that of small-world phenomenon which 
is deemed to stand for the highly efficient organiza-
tion. It combines local clustering between vertices 
of a network to create cliques and least length paths 
that globally connect all vertices of the network re-
vealing vertices are joined with a few intermediate 
steps [1]. It is likely an oversimplification to inter-
pret a higher or lower value of most metrics as nec-
essarily a positive or negative Sustained endeavor 
to classify links among graph dependent metrics 
and behavioral functioning is crucial to speculate 
outcomes. Graph theory is involved in the study of 
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clinical populations that comprises stroke, epilepsy 
and brain injury. Latest literature surveys examin-
ing brain networks in have observed that patients 
displayed a shift away from small-world networks 
[3-4]. In the case of epilepsy, it is observed that in-
creased clustering, characteristic path length, and 
segregation [5-7]. Hub disruption are responsible 
for various neurological conditions and can adopt to 
higher cognition asking for integration [1,8]

PERCEPTUAL CLUSTERING

Wertheimer brought out the pertinence of per-
ceptual clustering and conglomeration in vision and 
enumerated vital factors like proximity and similar-
ity that led to visual clustering. But, various issues 
related to computation of perceptual clustering are 
yet to be fully addressed. Several alternatives are 
suggested to split an image into distinct subsets. Nat-
urally one can ask how to a) choose the right meth-
od, b) identify the criterion to be optimized, c) devel-
op a suitable step by step procedure for optimization. 
This approach is apt for medical image departmen-
talizing, for perceiving and delineating debonair ob-
jects, grasping the geometric features of the organs, 
like position of the tumor. Exact brain tissue depart-
mentalizing from Magnetic Resonance Imaging 
(MRI) is a pertinent issue in several medical image 
system applications in the study of certain brain dis-
orders. One instance is to analyze and evaluate the 
effects of certain pharmaceutical treatments being 
carried out in clinics. The approaches depending on 
elastic deformable models [9] have demonstrated 
the effect due to small and local shape changes, spe-
cifically for normal tissue departmentalization. One 
can see [10,11,12] for approaches depending on 
Gaussian intensity models, Markov random field 
models, supervised or unsupervised classification 
etc., A region departmentalization depending on a 
graph cut supports image split. This can be coined as 
a generalized eigenvalue problem. The notion of op-
timality of the graph cuts were successfully applied 
to stereo, image restoration, image departmentali-
zation. 

GRAPH CUT

Graph-cut is a step-by-step procedure to find a 
globally optimal departmentalization solution. It is 
also refereed as Min-cut considered as interchange-
able to Max-flow. The vertex set of a graph G = (V, E) 
can be split into two disjoint sets, X, Y, X ∪ Y = V, X ∩ 
Y = Ø by deleting edges joining the two parts. The 
degree of dissimilarity among these two parts can 
be determined as total weight of the edges that have 
been deleted. In graph theory terminology it is ref-
ereed as the cut. Cut (X, Y) = Σ w(x, y) x ϵ X, y ϵ Y. The 

notion of optimality related to the cuts is discussed 
through eigenvalue allocation to each cut. Problems 
of this type were well analyzed in the field of graph 
theory. However, for the optimization it is very 
hard. Graph cut approaches were applied to stereo, 
image reimpose, texture concoction and image de-
partmentalization. We will provide here a crisp note 
on graph cuts for image departmentalization.

Suppose that t1, . . . , tn are the data points then the 
aim of clustering is to split the data set into various 
smaller sets in such a way that the elements in the 
same set are similar and elements in distinct sets 
are dissimilar to each other. The data can be epito-
mized as a graph G = (V, E, W) where V stands for the 
vertices that epitomizes the data points ti, E the edge 
set with weights allotted by a weighted adjacency 
matrix A = (aij) i, j = 1,...,n. An edge joining two verti-
ces ui and uj carries a weight that is greater than or 
equal to zero. If aij = 0 then we say that the vertices 
ui and uj are not linked. The degree of a vertex ui ∈ V 
is defined as di = Σ aij j = 1, …, n. Observe that, this 
sum runs only over all vertices adjacent to ui. The 
degree matrix D is conceived as the diagonal matrix 
with the degrees d1, …, dn on the diagonal. A divide 
of similarity graphs depends on symbolizing the lo-
cal neighborhood links among the data points. Dif-
ferent similarity graphs were suggested in spectral 
clustering. For this one can use the ε -neighborhood 
graph. All links with distances below a threshold ε 
are set to 1. That is, we set Σ aij = 1 if ∀ (i, j) d (i, j) < ε.  
When the input data are epitomized as a similarity 
graph with the adjacency matrix A, the easiest way 
to departmentalize the image is to build a biparti-
tion of the graph. The normalized Cut Ncut is nor-
mally employed to iron out this problem. The yard-
stick to be minimized for splitting an image into A 
and B is: Ncut(A,B) = ((1/Vol(A)) + (1/Vol(B)))∑ aij with 
i ∈ A, j ∈ B where Vol(A) = Σ di  where i ∈ A and A ∈ B 
= V, A ∩ B = Ø, A and B are subsets of V(G), B = Ac. 
Minimizing Ncut amounts to determining a cut of 
small weight among two subsets with strapping in-
ternal links. It is known that optimizing the Ncut 
yardstick is NP hard. Laplacian matrix is employed  
to solve the optimizing problem. In the occurrence 
of k-split, the clustering involves picking the subsets 
of the partition as X, …, Xk which minimizes: cut (X, 
…, Xk) =  cut (Xi, Xi 

A Graph Cut based procedure for tumor departmentaliza-
tion

Step 1: Build a weighted graph G = (V, E, W) by 
deeming the image pixels as vertices. We introduce 
an edge among two pixels. aij = (exp(║X(i) – X(j)  /
SI2)*(exp(║Y(i) – Y(j) /SY2)  if SI ║Y(i) – Y(j) ║ < r and 
0 otherwise, where at pixel i X(i) denotes the gray 
level value, Y(i) denotes in an image the position of 
pixel i, Aij acts as similarity measure among the pix-

).
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els i and j , r the cutoff distance from i to j, SI denotes 
a constant linking to the gray level and SX a constant 
linking to the distance.  

Step 2: Split the graph into parts with the similar 
pixels in the same part and dissimilar pixels in dis-
tinct parts and determine the similarity matrix A 
=|aij| and the degree matrix D = |di|= Σi aij. These 
two matrices A and D are pertinent for determining 
the generalized eigenvector to minimize the graph 
cut.   

Step 3: Use the Laplacian matrix L = D – A and 
(D- A)z = λDz to find the eigenvalues and eigenvec-
tors.  

Step 4: redo bipartition iteratively. Stop when 
the Ncut value is more than a previously set value.

DISCUSSION

Graph analysis is employed to probe the brain 
tumor population, despite the availability of limited 
literature on the topic. The brain tumor population 
is an apt set amenable for analysis involving graph-
based metrics due to its ability to tackle network dis-
ruption confederated with local/global effects of tu-
mors and that of radiation and demyelination. Aerts 
et al. [13] contributed a crisp overview on graph the-
ory-based probe about brain tumor patients. They 
remarked that the current research at those times 
pointed to reduced isolation and diminished global 
conglomeration in LGG refereed as low-grade glio-
ma.  Over the same time period another investiga-
tion of HGG called grade glioma was announced. 
But it reported no variation among HGG and con-
trols. All probes made a good use of DTI, fMRI, MEG 
or EEG and employed graph theoretic probe to scru-
tinize brain networks in affected population of 
brain tumors. As of now only one detailed probe in-
volving graph theory has been carried out [14]. It is 
observed that the effects on brain networks are dis-
tinct and incomparable among patients who are 
adults and one who escaped childhood brain tum-
ors. This is because adult brain tumors happen post 
neurodevelopment. Hallquist and Hillary and Yeh 
et al [15,16,17] gave respectively an excellent kno-
whow on various issues that are methodological 

found in neuroscience network with particular con-
centration on functional graph analysis. 

CONCLUSIONS

Employing graph theoretical approaches to ex-
plain brain network attributes in the framework of 
brain tumors is yet in its initial stages of develop-
ment. However, it is a fast upcoming area of enquiry 
with huge window for stimulating discoveries. Ob-
servations have indicated to disturbances function-
al imbalance in brain network structure with re-
gards to several measurements of centrality and 
conglomeration despite inconsistency in results 
concerning direction and magnitude of affects. Oth-
er important factors like graph cuts and associated 
procedure for departmentalization with live im-
pacts on networks comprise the low /high grade of 
tumor and the pace with which it progresses. With 
continued effort on further probes, one can uncover 
various facts concerning the resiliency and plastici-
ty of brain amidst disruption and reveal new kno-
whow regarding how treatments impact the brain 
and its network.
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